

EDMONTON·ALBERTA·CANADA

Introduction

Listeria monocytogenes is a serious foodborne pathogen that has the ability to form filaments under certain environmental stress such as the presence antimicrobials. Filament formation is the phenotypical sign of antimicrobial stress of L. monocytogenes.

Microarrays are useful tools for measuring gene expression of *L. monocytogenes*, and can be used to determine if a cell population undergoes antimicrobial stress.

Machine learning (ML) algorithms can use a dataset derived from microarrays to learn a classifier that can later identify if a novel cell population is involved in a proposed biological process. While these algorithms [including Bayesian Net, J48 Decision Tree, Random Forest and Support Vector Machine (SVM)] are often used to classify eukaryote microarray experiments, this study focuses on a prokaryotic application using two strains of L. monocytogenes as examples.

Objectives

To explore if a machine learning algorithm can learn a classifier that can predict if a population of . monocytogenes is under stress from an antimicrobial:

- to distinguish between cefuroxime treated and untreated *L. monocytogenes* EGE-e, based on expression level (represented as the fluorescence intensity) for each gene from 32 samples [GEO accession GPL14687 (4)];
- to distinguish between L. monocytogenes 08-5923 treated with carnocyclin A (cclA) and untreated L. monocytogenes 08-5923, based on expression level of 15 selected genes that were \geq 2-fold up or down-regulated in the presence of ccIA. Features were selected using in-fold feature selection (2).

Using Machine Learning Algorithms to Detect Cellular Stress of Listeria monocytogenes from cDNA Microarray Data

Department of Computing Science, Edmonton, AB, Canada²

Xiaoji Liu¹, Urmila Basu¹, Petr Miller¹, Nasimeh Asgarian², Russell Greiner², Lynn M. McMullen¹ University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada¹, University of Alberta,

Results

Expression levels of genes relevant to cell morphology and death

Table 1: Genes \geq 2-fold up or downregulated in *L. monocytogenes* 08-5923 when exposed to ccIA. The genes from this table, as well as other relevant genes involved in cell division and PTS system (1, 5) such as *Imo2002*, *Imo1973*, *Imo0633*, Imo1438 and Imo1892, were included in the dataset for the subsequent classifying task.

Gene	Function of gene product	Fold change	Differential expression			
Cell division protein						
lmo2687	FtsW	2.39	Up			
lmo2033	FtsA	2.17	Up			
Phosphotransferase (PTS) system						
lmo0096	Mannose-specific	3.60	Up			
lmo1035	Beta-glucoside-specific	2.45	Up			
lmo1971	Pentitol-specific	2.29	Down			
lmo2782	Cellobiose-specific	obiose-specific 2.23				
lmo0023	Fructose-specific	2.14 Down				
lmo2097	Galactitol-specific	2.03 Down				
lmo0503	Fructose-specific	2.01	Down			

Performance of ML algorithms

Table 2: the accuracy of various algorithms in predicting if a population of *L. monocytogenes* was under stress.

Task	Algorithm	Test mode	Accuracy	Accuracy (in fold cross validation)
clA-stress	J48	5-fold cross- validation	90%	90%
	Bayes Network		90%	90%
	Random Forest		50%	90%
	SMO		70%	60%
	Naiive Bayes		20%	90%
efuroxime- stress	J48	10-fold cross- validation	90.63%	N/A
	J48	32-fold cross- validation	96.88%	N/A

Conclusions

Future Work

References

- 78:2602-2612.
- 5306

J48 Decision Tree was the most accurate algorithm for predicting cefuroxime stress (96.9%) accuracy with leave-one-out cross validation)

Both the J48 Decision Tree and Bayesian Network were equally effective for predicting whether L. monocytogenes was under stress from carnocyclin A (90.0% accuracy with 5-fold cross validation)

Bayesian Nets and J48 Decision Tree could be applied to detect the presence of cellular stress in prokaryotes using data from DNA microarrays

Use J48 and Bayes Networks with in fold cross validation to analyze microarray data from the cefuroxime-stress study

Examine the consistency of the performance of these algorithms in all the biological replicates of the microarray experiments

Test the performance of the algorithms with various datasets containing expression values of genes from different signalling pathways

Acknowledgements

This project was supported by funding from the Alberta Livestock and Meat Agency.

Bergholz TM, B Bowen, M Wiedmann and KJ Boor (2012) Appl. Environ. Microbiol.

2. Dupuy A and RM Simon (2007) J. Natl. Cancer Inst. 99:147 – 57.

Hall M, E Frank, G Holmes, B Pfahringer, P Reutemann and IH Witten (2009) The WEKA Data Mining Software: An Update. 11(1).

Nielsen PK, AZ Andersen, M Mols, S van der Veen, T Abee and BH Kallipolitis (2012) Microbiol. 158(4):963-974.

Stasiewicz MJ, M Wiedmann, TM Bergholz (2011) Appl. Environ. Microbiol. 77:5294-